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Abstract. We present MERCURY, a new software for computer-assisted
composition based on algorithms of fuzzy clustering. This software is
able to generate a big number of transitions between whatever two dif-
ferent melodies, harmonic progressions or rhythmical patterns. Mercury
works with symbolic music notation, therefore the software is able to
read music and to export the generated musical production into Mu-
sicXML format. This paper will focus on the theoretical aspects of the
CFT-algorithm, implemented in the software for creating these complete
transitions, overviewing the structure of the program as well the user
interface and its music notation module. Finally, several computational
examples will show the wide variety of compositive possibilities that Mer-
cury brings.
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1 Introduction

The first public performance of the Illiac Suite on 9th August of the year 1956 at
the Illionis University [1], is considered to be the starting point of the computer-
assisted composition. Along the last six decades, a big number of programs have
been developed bringing new technical possibilities and widening the compositive
abilities of the computers. The main disciplines that have been extensively ex-
plored can be summarized in [15]: using Markov models for generation of musical
structures or sequences [6], creating generative grammars for the production of
musical structures [16], algorithmic composition based on chaos theory and self-
similarity [5], approach to composition and variation using genetic algorithms
[3], use of cellular automata [13], neural networks and more recently techniques
coming from artificial intelligence and machine learning [9].

The techniques of data clustering, either crisp or fuzzy, have been successfully
applied to the field of computer-assisted musical analysis, used for mode recogni-
tion [18], musical patterns analysis [4] among others goals like style classification,
etc. In the past edition of MCM 2017 Conference, we proposed the algorithm
FOCM for comparing some ordered sequences of notes [11]. The software that is
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presented now is able to generate variations and transitions from a given initial
musical material to a given final one. For that purpose, we have constructed a
new fuzzy clustering technique that transforms any initial sequence into a final
sequence even though the number of elements is different. Besides, the software
generates a transition accumulating all the intermediate states. The musical
adaptation of this algorithm has been implemented in the software Mercury,
that provides the users with three basic kinds of transitions, according to the
three tradicional characteristics of music: melodic transition, harmonic transition
and rhythmical transition. Once the user has decided which one will be used,
Mercury reads the input data from MusicXML files and parses the information
that at any case is required. Once user has set up the parameters, experimented
with transitions and evaluated the results, the music material generated by the
computer can be exported to a new MusicXML file, and subsequently loaded
into any music notation software (e.g. Musescore, Finale, Sibelius, etc.) where
the composer can continue with the art of music composition.

2 Theoretical background

According to the definition given in [11] for the FOCM algorithm, we can express
the sequence of notes as:

Definition 1. Let x be a musical note determined by q characteristics (pitch,
intensity, duration, silence, etc.) expressed as a vector in R? A melody of n notes
is a sequence M = {x;}}_,, where each x; € RY is a musical note.

As in this work we will use harmonic sequences, the treatment of the harmony
will be similar to the sequence of notes. Moreover, as in this case we are only
interested in the pitch, the notes can be expressed as real numbers, and conse-
quently a chord of k notes will be an element of R¥.

Definition 2. Let y € R* be a chord defined by a k-tuple of MIDI pitch values
€ [0,127] expressed as a vector in RF. A k-harmony S is the sequence S =
{y;}_, where each y, € R* is a chord of k MIDI pitches.

To study the rhythm we will restrict the notation. A rhythmical element is
defined by three characteristics: the duration coefficient 6 €]0, oo, the silence
€ [0,1] and the MIDI velocity € [0,127]. This duration coeflicient was obtained

in [11] as
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Definition 3. A rhythm pattern of n elements Z is a sequence % = {z}7
where each z; € R® is a rhythmical element.

2.1 The main algorithm

Mercury is able to generate complete transitions between two different melodies,
harmonies or rhythmical patterns by means of a recursive application of the



A software based on fuzzy clustering for computer-assisted composition 3

FOCM algorithm. The process works in this way: Once the two melodies (or
two harmonic sequences or rhythmical patterns) have been represented as two
sequences of elements in the metric space R?, the algorithm will initialize the set
of centroids with the sequence that is desired to be changed, usually the shorter
one having ¢, being ¢ < n, denominated as sequence B. The final sequence with
n elements, our goal, is denominated sequence A and is assigned to the points
of the data set about which the partition will be calculated. Once FOCM has
ended, a new centroid will be added to the set of centroids and FOCM will
run again, repeating this process until the number of centroids (sequence B) is
equal to the number of points of the data set (sequence A). At that point, the
algorithm converges totaly and sequence B becomes equal to sequence A.

STEP 1. Choose any convenient neighbourhood function.

STEP 2. Choose any convenient distance function d in RY. Establish the
fuzzyness parameter A\, 1 < \ < co. Set ¢y = c.

STEP 3. Initialize the centroids: assign cq to the values of the initial sequence
B. For each iteration [ do:

STEP 4. If ¢; > n then stop; else if ¢; < n do:

STEP 5. If ¢; = n select discrete neighbourhood function (see Table 2.3),
otherwise continue with the initial neighbourhood function.

STEP 6. Update U(®) and {vy)} using equations

1 . uij - f(2, i=
Uij = — s Uiy = 1&.9) V= (2)
> [fmed]™ Swe sGh > i
p=q LI k=1 i=1

STEP 7. Compare UW with +D using any convenient matrix norm, being
¢ € (0,1) an arbitrary termination criterion. If || U(+D — U ||< ¢
then go to STEP 8. Otherwise set [ = [ + 1, calculate the centroids
{v]@} with U® and U;; given in (2) and go back to STEP 6.

STEP 8. Choose the two consecutive points h, h +1 with 1 < h < ¢; — 1 for
which the distance between them is maximum. In other words, for
the current iteration [ select a point h such that

l l
\Jnax_ [d(vh, Vi) 3)

STEP 9. Set [ = [ + 1. Add to V! a new centroid in the position A + 1 of
the sequence of the centroids, with the attributes calculated as the
average: (vl + v 1)/2. Update ¢; = ¢; + 1. Go back to STEP 4.

2.2 Global Fuzzy Transition States

The set of all the intermediate states through which the set of centroids crosses
constitutes a complete transition from the initial state V° to the final state V¥,



4 B. Martinez, V. Liern

in which the number of centroids ¢ is equal to the number of points n and at the
same time any centroid ¢ is equal to any element 4, accomplishing this condition

v =x;, 1<i<n. (4)

We denote vl as a musical element (note, chord or rhythm element) in the I-
th iteration, 0 <1 < k, 1 < ¢ < c;- A state in the [-th iteration is given by

1 0 .
the sequence V' = {vi,vh ..., vL}. We asume that V° = {v{ v, ... v0}is
the initial state. The set of all the iterated states is given by a Global Fuzzy
Transition.

Definition 4. A Global Fuzzy Transition :?\from initial centroids V° to the
final centroids VE s defined by the sequence

T={V .V, V2 . V' ={V},. (5)

2.3 Neighbourhood and distance functions

Neighbourhood functions are the key point in algorithm FCM that allow to
introduce the order of a sequence in the process of clustering. They set the
weight that every point of the data set will be given when comparing it tho each
point of the centroids set. In this way, if an appropriate function is defined, we
can easily relate the first elements of the data set to the first elements of the
centroids set with high weight values, and at the same time eliminate the relation
of the first elements of the data set with the last elements of the centroids set
just setting zero in this case to the weigh values. In Table 1 we show the more
usual neighbourhood functions, where n, c are number of elements of the data
set sequence and centroids sequence, respectively.

Table 1. Usual neighbourhood functions.

Name Formula
1. Gaussian  f(i,5) = ﬁe*[ (i* ((TZ 11)> ]
2. Triangular  f(i,7) = {%’_ (n(z ‘LH - iiolf:iﬁgﬂn B where 1 = ((: 11))J
3. Exponential f(i,5) = eiHi =1
a=-2j/(c=1)+1
4. Sigmoidal  f(i,5) = m where b=71/(n—-1)

c=(n-1)/2
1, ifi=j

5. Discret i j) =
iscrete f@,9) {07 ifi
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Fig. 1. Neighbourhood functions used in Mercury: (a) Gaussian, (b) Exponential, (c)
Triangular, (d) Sigmoidal.

Table 2. Several distance functions implemented in Mercury.

Distance function Expression

Nf=

1. Euclidean deue(X,y) =

—

>k @k — yk)Q}

NI

2. Average Euclidean  deuc(%,y)

——
M Q=

> ICEAY
0

3. Manhattan dman(X,y) = ek — k]
4. Minkowski dmin (X, y) = {Zzﬂ |zx — yk|T:| T, r>1
5 Chebyshev dmax (%, y) = maxi_y lox —ysl

a 3
6. Chord devord (X, y) = [2 _ QM}

Ix[l2llyll2

7. Geodesic dgeo(X,y) = arccos 1 — dch#d(xvy)
8. Canberra metric dean(x,y) = 320, %

q k=1 \ @Rty

1
213
9. Divergence coefficient daiy(x,y) = | 2 37 (M>

1, ifx=y

10. Discrete metric dais(X,y) =
a(5¥) =10, iex 2y
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Mercury allows the user to select one among several distance functions in
order to proceed with the calculations. Due to their specific definition, each
function returns very different computational results, providing a high degree
of musical variety. The distance functions [7] that have been implemented are
shown in Table 2.

2.4 The Quantization Process

It is necessary to establish a criterium for determining the equivalence between
the real numbers generated by the CFT-Algorithm and the symbolic music no-
tation. In the case of the pitch attribute, the notes are chosen enharmonically
by means of selecting the closer integer MIDI pitch value. In an similar way the
intensity, represented musically with the following symbols of ppp, pp, p, mp,
mf, f, ff, and fff, will be approximated to the closest MIDI velocity value of the
previous symbols (see [17]), according to the next table:

Table 3. MIDI velocity values for the dynamic symbols used in musical notation.

Dynamic Velocity Dynamic Velocity

pppp 8 mf 64
ppp 20 f 80
pp 31 ik 96
p 42 Riii 112
mp 53 ot 127

In the case of the duration coefficient, a wide variety of possible symbolic
rhythmical notations exist, whose duration coefficient is exactly the same. In
order to approximate the numerical result obtained for the duration attribute
to its closer symbolic notation, the user has to specify which of the possible
combinations of durations (whole, black, quaver, semiquaver, etc.), number of
tied notes, number of dots and kinds of tuplets (3:2, 5:4, 7:4, etc.) are possible.
To achieve this, Mercury offers the Quantization Settings Menu. Figure 2 shows
an example of an user-defined quantization:

Quantization settings (D)

ISy

O
[ ¥ I i I ¥ R

Include tuplets (4:B):

7898101

AI II II~/II II~/II II~/II AL II I
3 9101

BI II~/II II~/II Il II AL II I

Max. number of dots: 2

Max. number of ties: 3

Ar 4

Fig. 2. Example of setting up for quantization.
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Once the setting has been established, Mercury calculates the duration co-
efficient for all the possible allowed combinations, removing the repeated ones,
sorting the final results by an increasing order and storing them in RAM mem-
ory just in case the quantization settings do not change in following calculations.
When the CFT-algorithm has finished and the program needs to search for the
most appropriate symbolic rhythmical notation, it will simply choose the closest
one in the list to the numerical value of duration coefficient generated by CFT.

3 Structure of the program

Mercury is composed of four basic modules: the calculation kernel, the in-
put/output module, the user interface module and the graphical music notation
library. All these modules work in an independent way and communicate them-
selves by a set of domain classes capable to represent and share all the symbolic
information that music needs. The calculation kernel is written in object-oriented
programming language C# and implements FCM, FOCM and CFT algorithms.
It also contains an architecture of classes to map the symbolic music notation
objects that can represent melodies, harmonies, chords, etc. into matrices of
real numbers with which the algorithm will work. In addition, each neighbour-
hood and distance functions are represented by classes that perform the required
calculations within the process of the algorithm. Mercury receives as an input
scores in format musicMXL that can be easily generated with standard music
edition software. The program parses the information included in the tagged
XML format and translates it into its musical object system. In this version,
melody is restricted to monophonic lines written only in one staff, but there
is no other restriction in terms of duration, rhythmical patterns, articulation,
dynamics, silences, etc. Mercury is able to work and create transitions between
two melodies of any kind and length. In the case of the harmonic transition, the
only restriction is that initial and final harmonies must have the same number
of voices, without any limit to the number of voices and length of any of the
harmonic sequences. Finally, in the case of loading rhythmical structures, they
should be written in only one voice and one staff; the program in that case will
omit any information regarding the pitch.

Load melodies *

Melody A&: =<none= u
Melody B: =none= u

Fig. 3. Menu for loading melodies.

All the results generated by Mercury can be easily exported to a MusicXML
file, so the user/composer has the possibility to use then as a musical mate-
rial for the composition process. Furthermore, the program allows the user to
listen, directly from the program by means of the MIDI playing, the melodies,
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chords or rhythms generated. With this functionality the user can evaluate the
musical interest of the results and choose those that fit better with the desired
compositive criteria.

3.1 The User Interface

The user interface has been developed under VB.NET, using the free controls
library Syncfusion for .NET programming, running at the moment under Win-
dows operating system with .NET framework 4.5 technology. The main form
allows the user to create, edit and save projects. Each project includes as many
tabs as the user would need to experiment with the possibilities that Mercury
offers. The music information can be easily edited or moved between tabs so the
work of composer becomes flexible and powerful. In the Play menu, the user can
specify the MIDI settings for playing the music in real time from the Microsoft
GS Wavetable Synth or any other MIDI device connected to the computer like
a MIDI digital piano.

Channel: Program:
Tempo:

MIDI

Play

Fig. 4. Menu for MIDI settings: device, channel, program, tempo.

The CFT algorithm requires the user to establish several parameters that
are direct and strongly related with the musical results obtained, and the Fuzzy
Settings Control allows to control them. As is explained in [2,11], the higher
the Fuzzy Coefficient X is, the fuzzier the process of clustering will be, so the
individual elements of the intermediate steps will show more tendency to share
their positions. The Stop Criteria is an arbitrary value that will stop the conver-
gence process. High values will make stop the process before the goal has been
accomplished, on the other hand, very low values will make the process slow and
will increase the requirements of memory.

Fuzzy settings *
Fuzzy Coefficient: 2,00 :
Stop Criterion:  0,001000 :

Fuzzy Order c-Means:

Meighbourhood:  Gaussian n!

Distance function:  Euclidean n!
Average Dissimilarity:

Add extra points:

Fig. 5. Menu for setting the CFT parameters.
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The menu brings also to the user the possibility to choose among several
neighbourhood functions (three from the gaussian family, three from the ex-
ponential family, four triangular, one rectangular, one trapezoidal and one sig-
moidal), and also the possibility to choose among several distance functions
(Euclidean, Average Euclidean, Manhattan, Average Manhattan, Minkowsky,
Chebyshev, Chord, Geodesic, Canberra metric, Divergence Index and Discrete
metric). Each one of these neighbourhood or distance functions will provide very
different intermediate states. The combination of all possible values for Fuzzy
Coefficient, all possible neighbourhood functions and all possible distance func-
tions brings to the user a huge amount of possibilities to explore in order to
search for the desired musical material.

3.2 The graphic music notation library

The library used for displaying the music is based on PSALMControlLibrary
(Polish System for Archivising Music Control Library), an open-source control
developed for .NET Framework in 2010 by Jacek Salamon. It has been strongly
modified to fit the requirements of our program. In Figure 6, three examples of
a melody, a harmonic sequence and a rhythmical pattern are displayed.

f
4
&
d
cﬁ:
qo
o
4
L
It
dop
o
oy
b
bl

Fig. 6. A melody, a chord sequence and a rhythmical pattern displayed in the graphic
music notation library of Mercury.

4 Computational examples

In this section we present three simple examples that illustrate the applicability
of the method in three different scenarios: melody, harmony and rhythm. Each
example is configured with different fuzzy coefficient A, distance function and
neighbourhood function, showing some of the intermediate musical states gener-
ated by the algorithm in each transition from element B to the objective element
A. Each intermediate state is notated with its corresponding step number on the
left. Notice that at the last state of each transition the element A is reached. The
examples have been run on Mercury and finally exported in MusicXML format
to a score edition software.
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Ezample 1. Intermediate states of the complete fuzzy transition calculated with
CFT between two birdsongs transcribed by composer Olivier Messiaen [14]. The
fuzzy settings are A = 30, exponential neighbourhood and chord metric.

2]"“v""'b" e A ~ a— — 1 B B —
= e e e

Fig. 7. Initial state and iterations number 1, 5, 9, 13, 17 and 21.

Ezxample 2. Intermediate states of the complete fuzzy transition calculated with
CFT between two harmonic sequences A and B. The fuzzy settings are A = 1.5,

gaussian neighbourhood and Manhattan distance.

0o rooo

0
OO 000

7 T T

7,

(Y coo H2Ro R G|
O8O0 O T O TG 1

Harmony A

Harmony B

s T Go0 |
s oS S —

Fig. 8. Global harmonic transition from B to A.
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Ezample 3. Intermediate states of the complete fuzzy transition calculated with
CFT between harmonies caccari and simhavikridita, belonging to 120 degi-talas
[8]. The fuzzy settings are A = 5, exponential neighbourhood and chord metric.

Rhythm A
(caccari)

Rhythm B H . . . ) . .
( simhavikridita )

Fig. 9. Global rhythmical transition from simhavikridita to caccari.

5 Conclusions

In this paper we have explored the possibilities of our software Mercury® in
the field of the symbolic computer-assisted composition. It provides the com-
poser with new and powerful tools to create transitions or variations of the
musical material in terms of melody, harmony or rhythm, widening the number
of possible creative options that may fit with the aesthetic requirements of his
artistic criteria. The music generated with the software can be easily exported
to the standard format MusicXML and afterwards used with any software or
score edition. The limitations of this first version of the software include the
restriction to monophonic melodic lines and the use of only one staff for the
music material used as input data. Besides, the transitions between harmonies
work only if all chords belonging to the initial and final ones have the same
number of notes. Future versions of the software will improve this limitations
and implement the CFT-algorithm to other characteristics of music: for exam-
ple, is it possible to create transitions between the timbre of two sounds (as
is shown in [12]) offering promising results for sound synthesis in the field of
electroacoustics or spectral music. Is it possible, as well, to create transitions
between two different tuning systems defined in [10]. The present version of
Mercury works only under Windows operative system, following developments
will include 10S and Android distributions. The software is currently available
at www.futurewebofmercury.com.
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