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Abstract. Symbolic melodic similarity aims to evaluate the degree of
likeness of two or more sequences of notes. In this work, we propose
the use of fuzzy c-means clustering as a tool for the measurement of
the similarity between two melodies with a different number of notes.
Moreover, we present an algorithm, FOCM, implemented in a computer
program written in C] able to read two melodies from files with Mu-
sicXML format and to perform the clustering to calculate the dissimi-
larity between any two melodies. In addition, for each iteration step in
the convergence process of the algorithm, a family of intermediate states
(transition melodies) are obtained that can be used as new thematic ma-
terial. This last feature, could be especially useful in the near future, as
a complement in computer-aided composition.

Keywords: Fuzzy Clustering, Simbolic Melodic Similarity, Computer-
Aided Composition.

1 Introduction

Symbolic melodic similarity is fundamental in the field of computer-aided com-
position [1, 13]. The measure of the similarity/dissimilarity between melodies is
a key factor both in defining transitions between two different melodies and to
generate new melodic material from an already preexisting melody [11]. In this
paper, we propose a procedure to measure the similarity between two melodies
by using an algorithm based on fuzzy clustering.

Our starting point will be the characterization of musical notes as points in
a metric space, where the coordinates represents musical characteristics. In this
way, a melody would be an ordered sequence of notes. Measuring the dissimilarity
between two monophonic melodies of equal number of notes can be made by
comparing, one by one, each note of the first melody with a note of the same order
in the second. However, for our purpose we would need to be able to establish
a generic comparison mechanism allowing the measurement of the dissimilarity
of two (monophonic or polyphonic) melodies of different number of notes. For
this, we will use an algorithm based on fuzzy c-means clustering.
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The purpose of that clustering would be to establish to what extent the notes
of a first melody are related to the notes of a second one. The purpose of that
clustering would be to establish to what extent the notes of two different melodies
are related. After the clustering, we will be able to calculate a global difference
between the melodies (dissimilarity) aggregating the partial distances weighted
by their corresponding membership coefficient. In the fuzzy logic context, the
membership functions are the extension of the characteristic set functions [16].
While characteristic functions take values 0 or 1, membership functions can take
any value between 0 and 1. Therefore, the membership coefficients express the
membership degree of an element to a cluster [16, 15].

Subsequently, in the comparison of the general dissimilarity, we will take into
account the order of the notes in each melodic sequence. For this, we will use
neighborhood functions. These functions will allow us to define a comparison
in which the clustering of the notes is influenced by their position within the
sequence defining the melody.

In order to verify the utility of our proposal, we present an algorithm, FOCM,
implemented in a computer program written in C]. This algorithm will allow us
to read two melodies from files in MusicXML format and to perform the clus-
tering to calculate the dissimilarity between them. In addition, for each itera-
tion step in the convergence process of the algorithm, a family of intermediate
melodies will be obtained that can be used as new thematic material. This last
feature could be especially useful in the near future, as an aid in computer com-
position. For this reason, in the last section we provide an example, in which
the number of intermediate melodies created by our method is shown. As an in-
stance, we present one of the intermediate melodies obtained from the measure
of dissimilarity between two passages.

2 Preliminary Concepts

A musical note determined by k characteristics (pitch, intensity, duration, tim-
bre, etc.) can be expressed as a vector in Rq, where q ≤ d. Of course, each
characteristic does not have to correspond to a single coordinate. For example,
in [7, 8] pitch is defined as a fuzzy set [16],

P̃ =
{

(f, µP̃ (f)), f ∈ [F0, F1]
}
, (1)

where f represents the frequency in Hz. and µP̃ (f) ∈ [0, 1] is the membership
degree of f to a note in a given tunning system. In this case, the fuzzy pitch
would be given by two coordinates (f, µP̃ (f)).

The most simple way to represent a musical note is by setting q = 2, the
pitch and the duration, and establishing two bijections from the pitch and the
duration of the note x ∈ R2. However, it is possible to work with a higher
number of dimensions in order to represent more accurately the characteristics
of music. New properties belonging to the requirements of other kinds of music
or styles [14], like Non Western-tradition music, Computer-Generated Music or
Electroacoustics could be easily assimilated as extra dimensions.
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As usual, the distance in cents between two notes whose frequencies are f1
and f2 can be easily calculated in cents [3, 8] by means of the expression

d(f1, f2) = 1200×
∣∣∣∣log2

(
f1
f2

)∣∣∣∣ cents. (2)

According to [12], the MIDI protocol defines a midi-pitch of a note by a
integer number comprised on a range [0, 127], being central C4 = 60 and reference
A4 = 69. For the equal temperament of 12 notes [3], there are 100 cents of
difference between two notes separated by one midi-pitch number (semitone).
If a concert pitch frequency fA4

(usually 440Hz) corresponds to the midi-pitch
number 69 then, the midi-pitch number of a frequency f , is

ν = 69 + 12 log2

( f

fA4

)
. (3)

Taking the figure of the whole note as the unit, it is easy to define a note’s
duration coefficient δ ∈ R. A half note has a coefficient 1/2, a quarter note 1/4,
a quaver 1/8, etc, i. e.

α =
1

2a
, −1 ≤ a ≤ 7. (4)

In addition, each dotted note multiplies its duration by the factor

β =

b∑
k=0

1

2k
=

2b+1 − 1

2b
, (5)

where b is the number of dots of the note. On the other hand, tuplets (described
in [2] as reading c notes in the space of d) are notated by the expression c : d,
and modify the duration of each note with the factor

γ =
d

c
. (6)

Taking into account expressions (4), (5) and (6), a number of τ tied notes
will have a duration

δ =

τ∑
i=1

(αi · βi · γi) =

τ∑
i=1

[
1

2ai
· 2bi+1 − 1

2bi
· di
ci

]
. (7)

Once the concept of musical note has been defined we can express a melody
as an ordered sequence of n notes, being each note of the melody a point in a
metric space.

Definition 1. A melody is a sequence, M = {xi}ni=1, where each xi ∈ Rq is a
musical note.

For instance, let us consider the melody in Figure 1. If we were only interested
in the duration δ and in the midi-pitch number ν of each note, the fragment could
be expressed as the following sequence of 14 notes:
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M1= {(δi, νi)}14i=1=
{

(0.041667, 67), (0.041667, 69), (0.041667, 70), (0.166667, 69),

(0.166667, 67), (0.166667, 70), (0.250000, 72), (0.041667, 69), (0.041667, 72)

(0.041667, 70), (0.125000, 69), (0.187500, 67), (0.062500, 65), (0.750000, 67)
}
.

If the melody is polyphonic, as in Figure 2, the notes’ pitch is represented
by a vector ν̄ ∈ Rk, where k is the least common multiple of the number of
voices appearing in the melody. In Figure 2 notes with 1, 2 and 3 voices appear,
then k = l.c.m.(1, 2, 3) = 6. Consequently, if our only interest are the duration
and pitch of the notes, these could be expressed by using 7 coordinates. The
corresponding melody would be M2.

M2= {(δi, ν̄i)}5i=1=
{

(0.125; 67, 67, 67, 71, 71, 71), (0.0625; 64, 64, 64, 67, 67, 67),

(0.0625; 67, 67, 67, 71, 71, 71), (0.125; 64, 64, 67, 67, 71, 71),

(0.125; 71, 71, 71, 71, 71, 71)
}
.

Fig. 1. Example of a melodic line to be represented into the plane duration-pitch.

& 42 œœ œœ œœ
q = 92

œœœ œ
Fig. 2. Example of polyphonic melody.

3 Comparison of Melodies

If we consider two melodies MA and MB , both belonging to a q-dimensional
metric space, it is only possible to measure a well-defined distance between them
if they have the same number of notes. This does not necessarily mean that both
melodic lines have the same duration expressed in units of time; however, they
need to have the same number of points.

In order to compare those melodies we will first calculate a total distance
by accumulating the partial distance between each couple of notes xi, yi, i ≥ 1,
respecting the established order of the sequence of the points of both melodies.

Definition 2. Let MA = {x1, . . . ,xn} and MB = {y1, . . . ,yn} be two melo-
dies with n notes, belonging to a q-dimensional space Rq. Given d : Rq×Rq → R
a distance function, the distance between MA and MB can be defined as

D(MA,MB) = F{d(x1,y1), . . . , d(xn,yn)}, (8)
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where F is a prefixed aggregation operator [15].

In this work, until the contrary is noticed, we will use as F operator the
arithmetic mean, that is

D̄(MA,MB) =
1

n

n∑
i=1

d(xi,yi). (9)

Nevertheless, regardless the operator chosen, it is easy to verify the following
result:

Proposition 1. Assuming the previous notation, the following inequalities hold

min
i
d(xi,yi) ≤ D(MA,MB) ≤ max

i
d(xi,yi). (10)

As well known [3], the Weber-Fechner Law approximates the psychological
rules of human perception of intensity or pitch. This idea can be easily incor-
porated this into the calculation of the distance. For example, if we express
the notes x with three coordinates (x1, x2, x3) representing duration, pitch and
intensity, respectively, in [9] the following distance is used

d(x,y) = α · |x1 − y1|+ β · | log(x2/y2)|+ γ · | log(x3/y3)|, (11)

where α, β and γ are some prefixed constant values.

If we want to compare two melodies with different number of notes, Definition
2 has to be generalized. In fact, in the symbolic melody similarity literature it is
possible to find several examples in which some definitions of distance between
two melodies of different length are defined [10, 5]. The objective of many of these
works is to approximate as much as possible to human perception [11]. With
this aim, different techniques have been proposed ranging from the geometric
structure of the melodies [1] to fuzzy logic [11], for instance.

A definition of an average distance based on the clustering of two melodies
MA = {x1, . . . ,xn} and MB = {y1, . . . ,ym}, being n > m, allows us to
estimate how far away melody MA is from melody MB . Despite the fact that
this measurement will not satisfy the requirements of a distance function, the
result provides some useful information about to the degree of similarity between
these two melodies.

When a classical clustering process, e.g. c-means clustering, is applied to a
general data set X of information, the result is a Boolean partition of X into
c clusters, so each element of X belongs only to one cluster. Related to the
comparison of melodies, we can use this procedure to cluster the set of n notes
of melody MA into m subsets. Once this is finished, we will be able to associate
each subset in MA to a note in MB and finally, calculate an average distance
from every point of each subset in MA to its corresponding note in MB .

The global dissimilarity of the two melodies would be calculated by aggregat-
ing the partial average distance. However, while carrying out with this procedure
we have to accept two arguable assertions:
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1. It is assumed that comparing each note of MA only to one note of MB has
musical sense.

2. In the process of comparing notes the order information is omitted. This is
a key question in musical terms.

In what follows, a new proposal based on fuzzy logic will be presented. Real
features of musical fact can be better represented by this new approach. With this
objective, we will use fuzzy clustering applied to the calculation of a dissimilarity
measure between two melodies of different number of notes.

3.1 Fuzzy c-means clustering (FCM)

The fuzzy c-means is a clustering method initially developed by J. C. Dunn
[6] in 1973, based on the statement that any element of a given set is able to
belong to more than one cluster. Thus, the fuzzy clustering method will provide a
membership function that describes the belonging degree of each element to any
centroid. As it is explained in [4], the generalization of fuzzy c-means algorithms
comes from the iterative minimization of an objective functional.

Definition 3. Let the data set X = {x1,x2, . . . ,xn} ⊂ Rq. Let v be a set of
cluster centers v = (v1,v2, . . . ,vm), with vi ∈ Rq and m < n. Fuzzy c-means
functionals are defined as

Jλ =

n∑
i=1

m∑
j=1

(uij)
λ(dij)

2, (12)

where d2ij =‖ xi − vj ‖2, being ‖ · ‖ any inner product induced norm on Rq,
λ ∈ [1,∞) is the weighting exponent (degree of fuzzyness of the process), and uij
is the membership coefficient of xi to the cluster j.

The fuzzy clustering is achieved through an iterative optimization of Jλ,
updating, at each iteration, the membership coefficients uij as well as the cluster
centers vj by using the following expressions

uij =
1

m∑
k=1

[
‖xi−vj‖
‖xi−vk‖

] 2
λ−1

, vj =

n∑
i=1

uλij · xi
n∑
i=1

uλij

. (13)

The matrix U is a fuzzy partition ofX, formed by the membership coefficients
uij

Uij =

u11 · · · u1n
...

. . .
...

um1 · · · unm

 . (14)

As convergence condition of any fuzzy clustering we have

m∑
j=1

uij = 1, 1 ≤ i ≤ n. (15)
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3.2 Fuzzy c-means algorithm

In what follows we will show the implementation of the Fuzzy c-Means Clustering
Algorithm proposed by Bezdek in [4].

FCM-Algorithm

step 1. Fix a number of clusters m, 2 ≤ m < n. Choose any inner product
norm metric for Rq; fix λ, 1 ≤ λ <∞. Initialize U (0).

step 2. Calculate the fuzzy cluster centers {v(k)j } with U (k) and expression
(13).

step 3. Update U (k) using expression (13) and {v(k)j }.
step 4. Compare U (k) to U (k+1) using a convenient matrix norm, being ε ∈

(0, 1) and arbitrary termination criterion. If ‖ U (k+1) − U (k) ‖≤ ε
then stop, otherwise set k = k + 1 and return to step 2.

4 Measuring Dissimilarity by Means of Fuzzy Clusters

Let us consider two melodies MA and MB with different number of notes.
We will now make a fuzzy partition of the notes from MA with the initial
cluster centers given by MB , and apply the FCM algorithm k times until the
termination criterion is satisfied. Once the partition process is complete, we
can define a dissimilarity function between MA and MB by using the final
membership coefficients and the original cluster centers.

Definition 4. Let MA = {x1, . . . ,xn} ⊂ Rq and MB = {y1, . . . ,ym} ⊂ Rq be
two melodies, where n > m. Let d : Rq ×Rq → R be a distance function. Let uij
be the final membership coefficients calculated with FCM algorithm. The average
dissimilarity D from MA to MB is defined by

D(MA,MB) =
1

n ·m

n∑
i=1

m∑
j=1

uij · d(xi,yj) . (16)

By construction, D does not consider the natural order of the sequence of
notes within each melody. Thus, the partition that FCM algorithms calculate
does not weight in any special way the notes whose degree of neighbourhood is
stronger. As an illustrative example of this fact, in Figure 3 it is possible to see
three different melodies. Since Melody B is a complete retrogradation of Melody
A, average dissimilarity D between melodies A and C has exactly the same value
than average dissimilarity between melodies B and C,

D(MA,M c) = 0.23354, D(MB ,M c) = 0.23354.

This example shows that a comparison of different melodies without taking
into account the order of the notes does not completely reflect musical reallity.
To avoid this, we will introduce a dependence with the order in the algorithm.
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Fig. 3. Three example melodies, where Melody B is a retrogradation of Melody A.

In this way, higher weights will be given to the pair of notes that share closer
positions in the order of each melody, reducing the contribution to the global
dissimilarity of the pair of notes that are far away from an ordinal point of view.
Neighbourhood functions will provide the information related to the order in
which the pair of notes must be compared.

Definition 5. A continuous function f : R2 → R is a neighbourhood function
between two melodies MA,MB if∫ n

1

f(i, j)di <∞, ∀j ∈ {1, 2, . . . ,m}, (17)

where n is the number of notes of MA and m the number of notes of MB.

If a correct setting for the neighbourhood function is defined, neighbourhood
values of i ∈ (j − ε, j + ε) will be assigned to higher coefficients and the rest of
values will be assigned lower coefficients.

The procedure will be following: Once the fuzzy partition U has been calcu-
lated, we will assign a weight to any element uij by means of a specific neigh-
bourhood function f(i, j). In order to accomplish with the FCM convergence
criterion, we will normalize U as follows

ũij =
uij · f(i, j)
m∑
k=1

uik · f(i, k)
. (18)

Example 1. Gaussian neighbourhood function

fG(i, j) = Ae−
1

2σ2
[i+1− (n−1)·(j−1)

(m−1) ]
2

. (19)

In this function it is easy to see how the original µ value has been replaced by

1 − (n−1)·(j−1)
(m−1) . This expression has been obtained from the equation of a line

µ = f(j) that crosses through points (1, 1) and (m,n). Given the fixed values
n,m ∈ N, the shape of f(i, j) will change for each pair of values i, j. When j = 1,
the Gaussian will be centered at i = 1, but when j = m it will be centered on
i = n.
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Our proposal is to modify the algorithm FCM in such a way that the order of
the sequences of the notes MA = {x1, . . . ,xn} and MB = {y1, . . . ,ym}, n < m,
is taken into account. With this objective we propose the following algorithm,
named fuzzy ordered c-means (FOCM).

4.1 FOCM-Algorithm

step 1. Set {v(0)j } = {yj}. Let m,n be the number of notes of MB and

MA, respectively. Choose any convenient neighbourhood function.
step 2. Choose any inner product norm metric for Rq, and fix λ ≥ 1.

Calculate the initial Ũ (0) using (13), (18) and {v(0)j }.
step 3. Calculate the fuzzy cluster centers {v(k)j } with Ũ (k) and the equa-

tion (13).

step 4. Update Ũ (k) using the equations (13), (18) and {v(k)j }.
step 5. Compare Ũ (k) to Ũ (k+1) using a convenient matrix norm; being ε ∈

(0, 1) and arbitrary termination criterion. If ‖ Ũ (k+1) − Ũ (k) ‖≤ ε
then stop; otherwise set k = k + 1 and return to step 3.

Once the melodies have been compared by taking into account all the de-
scribed characteristics, we can establish the following definition.

Definition 6. Let MA = {x1, . . . ,xn} ∈ Rq and MB = {y1, . . . ,ym} ∈ Rq be
two melodies of different number of notes. Let d : Rq × Rq → R be a distance
function. Let ũij be the final membership coefficients calculated with FOCM al-

gorithm. The average ordered dissimilarity D̃ from MA to MB is defined by

D̃(MA,MB) =
1

n ·m

n∑
i=1

m∑
j=1

ũij · d(xi,yj). (20)

In what follows we show the utility of expression (20). For this, we will
calculate the dissimilarity between different melodies.

4.2 Computational Examples

Example 2. We are now going to compare the melodies appearing in Figure 4
using expressions (16) and (20).

The dissimilarity values are D(MA,MB) = 0.68938 and D̃(MA,MB) =
3.93483. The reason behind the disparity in the obtained results is that when
the order of the notes is not taken into account, we use D , sharp notes in MA

are compared with sharp notes in MB and flat notes in MA are compared
with flat notes in MB . In fact, when we give importance to the order, D̃ , both
melodies are quite different (dissimilarity is almost six times greater with D̃ than
with D). In Figure 5 we show a screenshot appearing in our implementation of
algorithm FOCM. We can observe how, for example, the two first notes in MB

are associated to the first time measure in MA, showing the above mentioned
differences.
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& 84 œb .œ œb œ œn œ# œn œ# œ œ3:2
6ORZ

0HORG\�$ œ œ .œ œb œ œ œ# œn œ# œ œ
3:2

& 44 ˙# . .œ rœ0HORG\�%

6ORZ .˙ œ .œb .jœ � Œ Ó

Fig. 4. Melodies of Example 1.

Fig. 5. Final result of clustering algorithm FOCM of MA and MB .

Fig. 6. Melodies of Example 2.

Example 3. Using the melodies displayed in Figure 6, we will now show the
capacity of our proposal to measure the dissimilarity in polyphonic melodies.

The obtained values are D̃(MA,MC) = 0.30695, D̃(MB ,MC) = 0.46356.
As it was expected, melodies in this example are more similar than melodies
in Example 1 and the differences between them increase when one of them is
polyphonic and the other is not.

Example 4. In Table 1 we provide an example showing how our proposal func-
tions. We have selected four passages of very well-known musical works: (1) =
W. A. Mozart. Symphony No. 40. First movement. Measures 1-4, (2) = L. V.
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Beethoven. Symphony No. 6. First movement. Measures 1-4, (3) = J. Brahms.
Symphony No. 3. Second movement. Measures 1-8, and (4) = B. Bartók. Music
for strings, percussion and celesta. First movement. Measures 1-4.

Table 1. Measurement of dissimilarity between melodies from Example 4.

MA MB D̃ ]States D̃ ]States D̃ ]States

Fuzzy coeficient = 2 Fuzzy coeficient = 2.5 Fuzzy coeficient = 3

1 2 0.2395874272 389 0.1820221001 389 0.1835055288 17
3 1 0.1144880336 56 0.1079920868 375 0.1094903790 584
4 1 0.4231256333 508 0.3294539142 672 0.3609358015 636
3 2 0.0910976980 10 0.1231091704 20 0.1233827179 12
4 2 0.7071511697 81 0.6642747436 194 0.6666523284 353
3 4 0.0692844111 51 0.1451223554 429 0.1383288250 310

In Table 1 we display the dissimilarity measures between melodies from Ex-
ample 4, as well as the number of intermediate compositions (]States) generated
by the algorithm with different values of the fuzzy coefficient used in the FOCM.

Fig. 7. One of the intermediate melodies obtained by the algorithm when measuring
the dissimilarity between passages (1) and (3) from Example 4.

5 Conclusions

The evaluation of the degree of likeness of two melodies is nowadays a topic of
great interest. By comparing the similarity of different melodies it is possible to
find patterns, to extract rules and to identify structures, all key questions in the
study of musical styles. In this work, we have proposed a fuzzy logic tool, fuzzy
c-means clustering, for the measurement of the similarity between two melodies
with different number of notes.

The proposed FOCM algorithm allow us to define a measurement of the sym-
bolic melodic dissimilarity between two different melodies, taking into account
the order of the sequences of notes that each melody contains. To a certain
extend, the definition of fuzzy c-means average ordered dissimilarity offers a
geometric way to compare very different melodic lines that can be used with
several purposes, like classification of melodies, computer-aided composition or
musical-styles recognition.
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Our proposal could also be applied to other fields of research in which is
necessary to estimate the degree of closeness of two different sequences of ordered
information.
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